Molecular Dynamics Simulations of Aqueous Species in the System H₂O-CO₂-NaCl over Wide Ranges of Temperatures, Pressures, and Compositions A.G. Kalinichev C, S and R.J. Kirkpatrick Department of Geology and NSF STC on Advanced Materials for Water Purification, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A. We have undertaken molecular dynamics (MD) computer simulations of CO₂-H₂O-NaCl fluids and carbonate and bicarbonate aqueous solutions over a range of temperatures, pressures and compositions relevant to many geochemical and technological applications such as geological sequestration of CO₂ in saline aquifers and water desalination. Molecular modeling is an especially promising approach for molecular-level understanding of the properties of such carbon-bearing aqueous fluids because their structures are not readily studied experimentally using conventional X-ray or EXAFS methods. In this case, experimental methods produce ambiguous results, because the C and O atoms of the solute species are not distinguishable from O atoms of solvent H₂O. MD simulations of 0.5m Na₂CO₃ and 0.5m and 1.5m NaHCO₃ aqueous solutions under near-ambient conditions show that their structures, hydration energies, and thermodynamic behavior are quite different. In Na₂CO₃ solutions, relatively stable ionic clusters of Na⁺ and CO₃²⁻ are formed, and long simulation runs were necessary to effectively probe the structure, energetics, and dynamics of these clusters. Due to the ion cluster formation, the diffusion rates of both Na⁺ and CO₃²⁻ are ~3-6 times lower than in similar sodium chloride solutions. In contrast, in NaHCO₃ solutions, ions cluster much less, and the diffusion rate of HCO₃⁻ is thus about the same as that of Cl⁻. The hydration shells of carbonate and bicarbonate ions both contain approximately 10 water molecules, but the carbonate one is more structured due to the higher anion charge. H₂O-rich and CO₂-rich compositions of the ternary CO₂-H₂O-NaCl system also demonstrate strikingly different behavior. In dense CO₂-rich fluids, dissolved H₂O molecules exhibit a high degree of hydrogen bonding and form relatively stable H-bonded clusters. In contrast, CO₂ molecules dissolved in water-rich fluids occur in clathrate-like cages formed by surrounding H-bonded water molecules.